Cloud

Multi-Cloud Strategy: AWS, Azure & GCP

Architecting resilient systems across multiple cloud providers with Terraform and Kubernetes

Elena Petrov

Cloud Architect • Nov 12, 2025 • 15 min read

Multi-Cloud Architecture

Multi-cloud strategies are no longer just about avoiding vendor lock-in. Modern enterprises leverage multiple cloud providers to optimize performance, ensure business continuity, and take advantage of best-in-class services. This comprehensive guide explores how to architect, deploy, and manage applications across AWS, Azure, and Google Cloud Platform.

Why Multi-Cloud?

Key Benefits of Multi-Cloud Architecture

  • Resilience: Eliminate single points of failure and ensure business continuity during outages
  • Performance: Deploy workloads closer to users using optimal regional offerings
  • Cost Optimization: Leverage competitive pricing and negotiate better terms
  • Best-of-Breed Services: Use AWS for compute, GCP for AI/ML, Azure for enterprise integration
  • Compliance: Meet data sovereignty and regulatory requirements across regions
  • Innovation: Access latest features without waiting for single-vendor rollout

1. Infrastructure as Code with Terraform

Multi-Cloud Provider Configuration

Define infrastructure across all three major cloud providers using Terraform:

# providers.tf
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
azurerm = {
source = "hashicorp/azurerm"
version = "~> 3.0"
}
google = {
source = "hashicorp/google"
version = "~> 5.0"
}
}
}

provider "aws" {
region = var.aws_region
default_tags {
tags = {
Environment = var.environment
ManagedBy = "Terraform"
Cloud = "AWS"
}
}
}

provider "azurerm" {
features {}
subscription_id = var.azure_subscription_id
}

provider "google" {
project = var.gcp_project_id
region = var.gcp_region
}

Unified VPC/VNet Architecture

Create consistent network architecture across clouds:

# AWS VPC
resource "aws_vpc" "main" {
cidr_block = "10.1.0.0/16"
enable_dns_hostnames = true
tags = { Name = "multicloud-vpc-aws" }
}

# Azure VNet
resource "azurerm_virtual_network" "main" {
name = "multicloud-vnet-azure"
address_space = ["10.2.0.0/16"]
location = var.azure_region
resource_group_name = azurerm_resource_group.main.name
}

# GCP VPC
resource "google_compute_network" "main" {
name = "multicloud-vpc-gcp"
auto_create_subnetworks = false
}

resource "google_compute_subnetwork" "main" {
name = "multicloud-subnet"
ip_cidr_range = "10.3.0.0/16"
region = var.gcp_region
network = google_compute_network.main.id
}

2. Kubernetes Multi-Cloud Orchestration

Managed Kubernetes Services

Deploy Kubernetes clusters across all three providers:

# AWS EKS Cluster
resource "aws_eks_cluster" "main" {
name = "multicloud-eks"
role_arn = aws_iam_role.eks_cluster.arn
version = "1.28"

vpc_config {
subnet_ids = aws_subnet.private[*].id
}
}

# Azure AKS Cluster
resource "azurerm_kubernetes_cluster" "main" {
name = "multicloud-aks"
location = var.azure_region
resource_group_name = azurerm_resource_group.main.name
dns_prefix = "multicloud"
kubernetes_version = "1.28"

default_node_pool {
name = "default"
node_count = 3
vm_size = "Standard_D2s_v3"
}

identity {
type = "SystemAssigned"
}
}

# GCP GKE Cluster
resource "google_container_cluster" "main" {
name = "multicloud-gke"
location = var.gcp_region

initial_node_count = 1
remove_default_node_pool = true
min_master_version = "1.28"
}

resource "google_container_node_pool" "main" {
name = "main-pool"
cluster = google_container_cluster.main.id
node_count = 3

node_config {
machine_type = "e2-standard-2"
}
}

Multi-Cluster Service Mesh

Implement Istio for cross-cluster communication and traffic management:

# Install Istio on all clusters
istioctl install --set profile=demo \
--set values.global.meshID=multicloud-mesh \
--set values.global.multiCluster.clusterName=eks-cluster \
--set values.global.network=aws-network

# Configure cross-cluster gateway
apiVersion: networking.istio.io/v1beta1
kind: Gateway
metadata:
name: cross-cloud-gateway
spec:
selector:
istio: eastwestgateway
servers:
- port:
number: 15443
name: tls
protocol: TLS
tls:
mode: AUTO_PASSTHROUGH
hosts:
- "*.global"

3. Multi-Cloud Networking

VPN Peering Connections

Establish secure connectivity between cloud providers:

# AWS to Azure VPN
resource "aws_vpn_gateway" "main" {
vpc_id = aws_vpc.main.id
tags = { Name = "aws-to-azure-vpn" }
}

resource "azurerm_virtual_network_gateway" "main" {
name = "azure-vpn-gateway"
location = var.azure_region
resource_group_name = azurerm_resource_group.main.name
type = "Vpn"
vpn_type = "RouteBased"

ip_configuration {
name = "vnetGatewayConfig"
public_ip_address_id = azurerm_public_ip.vpn.id
private_ip_address_allocation = "Dynamic"
subnet_id = azurerm_subnet.gateway.id
}
}

# GCP to AWS VPN
resource "google_compute_vpn_gateway" "main" {
name = "gcp-vpn-gateway"
network = google_compute_network.main.id
region = var.gcp_region
}

Transit Gateway Architecture

Create hub-and-spoke connectivity for optimal routing:

# AWS Transit Gateway
resource "aws_ec2_transit_gateway" "main" {
description = "Multi-cloud transit gateway"

default_route_table_association = "enable"
default_route_table_propagation = "enable"
dns_support = "enable"
vpn_ecmp_support = "enable"

tags = { Name = "multicloud-tgw" }
}

# Attach VPCs
resource "aws_ec2_transit_gateway_vpc_attachment" "main" {
subnet_ids = aws_subnet.private[*].id
transit_gateway_id = aws_ec2_transit_gateway.main.id
vpc_id = aws_vpc.main.id
}

4. Multi-Cloud Data Strategy

Data Replication and Sync

Implement cross-cloud data synchronization:

# AWS to GCP data replication
resource "aws_s3_bucket_replication_configuration" "main" {
bucket = aws_s3_bucket.source.id
role = aws_iam_role.replication.arn

rule {
id = "replicate-to-gcp"
status = "Enabled"

destination {
bucket = "gs://${google_storage_bucket.destination.name}"
storage_class = "STANDARD"
}
}
}

# Database multi-region setup
# AWS RDS Global Database
resource "aws_rds_global_cluster" "main" {
global_cluster_identifier = "multicloud-db"
engine = "aurora-postgresql"
engine_version = "14.6"
database_name = "app_db"
}

Multi-Cloud Data Warehouse

Use BigQuery Omni for cross-cloud analytics:

# BigQuery dataset with multi-cloud data
resource "google_bigquery_dataset" "multicloud" {
dataset_id = "multicloud_analytics"
location = "US"

access {
role = "OWNER"
user_by_email = var.admin_email
}
}

# External connection to AWS S3
resource "google_bigquery_connection" "aws_s3" {
connection_id = "aws_s3_connection"
location = "US"

cloud_resource {}
}

5. Multi-Cloud Monitoring and Observability

Unified Monitoring Stack

Deploy Prometheus and Grafana for cross-cloud observability:

# Prometheus configuration for multi-cloud
global:
scrape_interval: 15s
external_labels:
environment: 'production'
strategy: 'multi-cloud'

scrape_configs:
- job_name: 'aws-eks'
kubernetes_sd_configs:
- role: pod
kubeconfig_file: '/etc/prometheus/eks-kubeconfig'
relabel_configs:
- source_labels: [__meta_kubernetes_namespace]
target_label: cloud
replacement: 'aws'

- job_name: 'azure-aks'
kubernetes_sd_configs:
- role: pod
kubeconfig_file: '/etc/prometheus/aks-kubeconfig'
relabel_configs:
- source_labels: [__meta_kubernetes_namespace]
target_label: cloud
replacement: 'azure'

- job_name: 'gcp-gke'
kubernetes_sd_configs:
- role: pod
kubeconfig_file: '/etc/prometheus/gke-kubeconfig'
relabel_configs:
- source_labels: [__meta_kubernetes_namespace]
target_label: cloud
replacement: 'gcp'

Distributed Tracing

Implement Jaeger for end-to-end request tracing:

# Deploy Jaeger operator
kubectl apply -f https://github.com/jaegertracing/jaeger-operator/releases/download/v1.50.0/jaeger-operator.yaml

# Jaeger instance for multi-cloud
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
name: multicloud-jaeger
spec:
strategy: production
storage:
type: elasticsearch
options:
es:
server-urls: https://elasticsearch.monitoring:9200
ingress:
enabled: true
collector:
maxReplicas: 5
resources:
limits:
cpu: 1
memory: 2Gi

6. Multi-Cloud Security

Unified Identity Management

Implement centralized IAM with Okta or Auth0:

# Configure OIDC for all clouds
# AWS IAM OIDC Provider
resource "aws_iam_openid_connect_provider" "okta" {
url = "https://${var.okta_domain}"
client_id_list = [var.okta_client_id]
thumbprint_list = [var.okta_thumbprint]
}

# Azure AD Application
resource "azuread_application" "multicloud" {
display_name = "MultiCloud Application"

web {
redirect_uris = ["https://${var.okta_domain}/oauth2/callback"]
}
}

# GCP Workload Identity
resource "google_service_account" "multicloud" {
account_id = "multicloud-identity"
display_name = "Multi-Cloud Service Account"
}

Cross-Cloud Security Policies

Enforce consistent security policies using Open Policy Agent:

# OPA Policy for multi-cloud compliance
package multicloud.security

# Require encryption at rest
deny[msg] {
resource := input.resource
not resource.encryption_enabled
msg := sprintf("Resource %v must have encryption enabled", [resource.id])
}

# Require tagging
required_tags := ["Environment", "Owner", "CostCenter"]

deny[msg] {
resource := input.resource
missing := required_tags[_]
not resource.tags[missing]
msg := sprintf("Resource %v missing required tag: %v", [resource.id, missing])
}

# Network restrictions
deny[msg] {
resource := input.resource
resource.type == "network.firewall_rule"
resource.source_range == "0.0.0.0/0"
msg := "Firewall rules cannot allow traffic from 0.0.0.0/0"
}

7. Cost Management

Multi-Cloud Cost Tracking

Implement unified cost monitoring:

# CloudHealth/CloudCheckr configuration
{
"cost_allocation": {
"providers": ["aws", "azure", "gcp"],
"tagging_strategy": {
"required_tags": [
"Environment",
"Application",
"Team",
"CostCenter"
],
"auto_tagging": true
},
"budgets": [
{
"name": "Monthly Infrastructure",
"amount": 50000,
"alerts": [
{"threshold": 80, "recipients": ["ops@company.com"]},
{"threshold": 100, "recipients": ["cto@company.com"]}
]
}
]
}
}

Multi-Cloud Architecture Patterns

Pattern 1: Active-Active

Deploy identical workloads across multiple clouds with global load balancing for maximum availability and performance.

Use Case: Mission-critical applications requiring 99.99%+ uptime

Pattern 2: Active-Passive

Primary workload on one cloud with failover to secondary cloud for disaster recovery.

Use Case: Cost-sensitive applications with business continuity requirements

Pattern 3: Best-of-Breed

Use each cloud's strengths—AWS for compute, GCP for AI/ML, Azure for enterprise services.

Use Case: Enterprises leveraging specialized cloud services

Pattern 4: Cloud Bursting

Run baseline workloads on-premises or primary cloud, burst to secondary cloud during peak demand.

Use Case: Variable workloads with cost optimization focus

Implementation Roadmap

Phase 1: Foundation (Month 1-2)

  • • Establish cloud accounts and governance
  • • Set up identity federation
  • • Deploy Terraform infrastructure
  • • Configure basic networking

Phase 2: Connectivity (Month 3-4)

  • • Establish VPN/interconnect between clouds
  • • Deploy Kubernetes clusters
  • • Configure service mesh
  • • Set up DNS and traffic management

Phase 3: Applications (Month 5-6)

  • • Migrate/deploy applications
  • • Implement data replication
  • • Configure monitoring and logging
  • • Test failover scenarios

Phase 4: Optimization (Ongoing)

  • • Cost optimization
  • • Performance tuning
  • • Security hardening
  • • Disaster recovery drills

Conclusion

Multi-cloud strategies offer unprecedented flexibility, resilience, and optimization opportunities, but they also introduce complexity in management, security, and operations. Success requires careful planning, robust automation, and ongoing governance. By leveraging Infrastructure as Code, Kubernetes orchestration, and unified monitoring, organizations can harness the power of multiple cloud providers while maintaining operational efficiency. Start with a clear strategy, implement incrementally, and continuously optimize based on performance and cost metrics.

Key Success Factors

  • → Strong automation and Infrastructure as Code foundation
  • → Unified identity and security policies across clouds
  • → Comprehensive monitoring and observability
  • → Clear cost allocation and optimization strategies
  • → Regular disaster recovery testing
  • → Team training on multiple cloud platforms

Related Articles

Cybersecurity

Zero Trust Architecture

Security models for enterprise

Infrastructure

Infrastructure as Code with Ansible

Automate server provisioning

Docker

Docker Security Hardening

Secure containerized applications